Monday - Friday 09:00-16:00Saturday and Sunday - CLOSED+441614476762info@manchesterhipclinic.comSpire Hospital, 170 Barlow Moor Road, Didsbury, Manchester M20 2AF
stress-fracture-1200x801.jpg

Dr John Rogers MRCGP FFSEM(UK) – – Consultant in Sport & Exercise Medicine

Visiting Professor In SEM, Manchester Metropolitan University

Bone stress injuries and stress fractures are a common injury in track and distance runners and can cause significant loss of training time, often at crucial stages of the season. Stress fractures are defined as a partial or complete bone fracture that results from repeated application of a stress lower than the stress required in order to fracture the bone in a single loading. The annual incidence of stress fractures in track and field athletes is estimated to be 3.9 per 1000 hours of training with a prevalence of 76% and 10 – 20% of consultations in sports medicine are for stress fractures. It is important to diagnose stress fractures early so that they can be managed appropriately. If they are managed too conservatively this will result in unnecessary loss of training time and equally if higher risk stress fracture sites are not managed appropriately then they will not heal properly and it can take much longer for the athlete to return to running.

Stress fractures occur as a result of an overuse injury to bone. Sometimes they are due to fatigue within normal bone which is unable to adapt and repair quickly enough to cope with the repetitive biomechanical stresses and forces imposed through regular running.  This can happen when runners build up their volume and intensity of training too quickly and is often seen when athletes return to training after a break.

The other reason why stress fractures occur is due to bone insufficiency or ‘weak bones’. In this situation, an athlete may have gradually built up their training over a 2-3 month period to a reasonable volume e.g. 40-50 miles per week. Due to underlying metabolic bone disease with low bone mineral density or osteoporosis, the structurally abnormal bone cannot adapt and repair itself to withstand the repetitive stresses and strains involved in normal training loads and this results in a stress fracture.

The commonest sites for stress fractures in runners are the tibial shaft (the shin), the navicular and the metatarsal bones in the foot. Other less common sites in runners include the femur (shaft and neck), sacrum, fibula, patella, talus, sesamoid, calcaneus, cuboid and the lower back. 

Diagnosis

A stress fracture should be considered in athletes with progressively worsening localised bone pain which comes on with running. It is important to look for risk factors for bone injury as described below. As things progress, the pain starts to come on earlier within training sessions and runs and the pain can persist after runs and during day to day activities such as walking. Sometimes pain in bed at night is a feature but this is not that common. It is important to know what volume of training the athlete is doing and how quickly this has been built up. There is often a sudden increase in volume or intensity of training with lack of rest days. The common risk factors should be asked about and examined for. A dietary history is important in male and female athletes and a menstrual history is very important in female athletes. Occasionally, there may be a family history of osteoporosis.

Clinical examination of athletes with a lower limb or pelvic stress fracture usually reveals localised bony pain on hopping and this is a useful screening test. There is often focal bony tenderness at a specific site. Pelvic, neck of femur and lower back stress fractures can be a bit more difficult to pick up on clinical examination but can be confirmed through imaging. Early diagnosis through imaging helps to grade the bone stress injury, initiate appropriate management and minimise the time to return to running.

Investigations

Magnetic resonance imaging (MRI) is the most sensitive and specific imaging modality for diagnosing stress fractures. It is important that the correct sequences are used to look for bone marrow oedema (STIR weighted sequence). MRI scans are also useful for excluding other soft tissue causes of localised pain. The other advantage of MRI is that it does not expose the patient to ionising radiation. There is a huge variation in the cost of paying privately for these scans and current rates vary from £195 to £500+. In most parts of the UK, it is difficult to get an MRI scan done quickly in the NHS for sports medicine related problems.

Plain x-rays (radiographs) are usually not that helpful although a discrete fracture line and/or reaction to the lining of the bone can sometimes be seen.

Radioisotope bone scans are sensitive for stress fractures but not specific i.e. they may also be positive in cases of infection, joint inflammation or cancer.

Computerised Tomography (CT) scans may be useful to establish the extent of a stress fracture and to plan surgery e.g. navicular stress fractures. A positive MRI scan but negative CT scan indicates a stress response which has a better prognosis.

Ultrasound Imaging may be useful in the diagnosis of metatarsal stress fractures where it can show a break in the cortex (lining) of the bone.

CT SPECT is a combination of CT and a nuclear imaging test where the images are superimposed on each other. It can be useful in some cases when the MRI scan is negative or inconclusive but the index of suspicion for stress fracture remains high.

DEXA scanning measures bone mineral density (BMD) and is an important investigation for screening athletes at risk of osteoporosis e.g. female athlete triad, stress fractures with a low volume of training, post menopausal runners with stress fracture, family history of osteoporosis. In athletes identified with low BMD (Z score < -1.0) and those with features of female athlete triad, DEXA scans should be repeated annually to see if the BMD is improving.

Blood testing for vitamin D status is important as if low this can delay healing and will increase the risk of further bone stress injuries. Vitamin K deficiency can be a risk factor for stress fractures but this is an expensive test and is not routinely tested for at first presentation. Other blood tests used to investigate amenorrhoea (no periods for >90 days) are thyroid function tests, prolactin, FSH, LH and oestradiol levels.

How are bone stress injuries graded?

Table 14

Grade

X-ray

Bone Scan

MRI

1

Normal

Mild unicortical uptake

Positive STIR

2

Normal

Moderate unicortical uptake

Positive STIR and T2

3

Discrete Line

Acitivity in 50% of bone width

Positive T1 and T2

4

Fracture / Periosteal reaction

Bicortical uptake

Fracture line

Grades 1 to 3 are called stress reactions and grade 4 is a stress fracture. This distinction is important for management as stress reactions take less time to heal and the athlete can return to running several weeks sooner.

Who is at risk?

Table 23

Extrinsic (environmental)3

Intrinsic (to the athlete)

High mileage

External rotation of the lower limb

Inadequate recovery/rest periods and training with fatigued muscles

Bone anatomy: femoral anteversion, leg length difference, genu varum and valgum(bow legged and knock kneed), narrow tibia(shin)

Running Pace

Muscle: small calf girth

Hill running (particularly downhill)

Female sex

Harder training surface

Older age (>20)

Footwear (weak evidence that shoes play any role)

Poor nutrition, particularly low calcium intake and low overall energy intake

Smoking

Previous bone stress injury

Aerobic fitness and sporting experience

Family history of bone stress injury or osteoporosis

Female Athlete Triad

Women with the ‘Female Athlete triad’ are especially at risk of bone stress injury.  This condition affects many female endurance runners with low body weight/BMI. It consists of low energy availability with or without disordered eating, amenorrhoea (loss of regular menstruation/ no periods for >90 days) and low bone mineral density / osteoporosis. Athletes with disordered eating or conditions such as anorexia or bulimia need specialist medical input. For more information on this important condition have a look at this useful website: www.femaleathletetriad.org

Relative Energy Deficiency in Sport (RED-S)7

The RED-S concept has been adapted from a previously identified syndrome, the female athlete triad, which affects active women with low-energy availability, menstrual dysfunction and low bone mineral density. Emerging data suggest there may be a parallel syndrome in undernourished male athletes with resulting hypogonadotropic hypogonadism and impairment of bone health. RED-S is a comprehensive model depicting a low-energy status in physically active women or men. (Figure 6)

Management

Stress fractures with a low risk of not healing properly can be managed conservatively in primary care (GP and a local physio) by stopping running. Table 2 outlines stress fractures at low and high risk of not healing properly (non union). The more serious the stress fracture the longer the athlete must rest the limb. The general principle of managing low risk stress fractures is to offload from running for 6 to 8 weeks and then to slowly increase the volume of steady running. During this first 6 to 8 weeks athletes are usually safe to cross train to maintain cardio-respiratory fitness. Commonly used cross training modalities include:

  • Deep water running / aqua jogging (Figure 7)
  • Cycling
  • Swimming
  • Rowing
  • StairMaster
  • Cross-trainer (elliptical)
  • Nordic Ski

The rate of resumption of running will depend on the athlete and the symptoms but generally most runners will build back up to full training over the following 6 weeks (12 – 14 weeks from initial offload).

Table 3 Stress fractures at low and high risk of non-union3

Low risk of non-union

High risk of non-union

Femoral neck

(medial cortex – lower and inner border)

Femoral neck

(superior cortex – upper and outer border)

Tibial shaft (posteromedial cortex) –

Inside edge of shin

Tibial shaft (anterior cortex) –

Front of shin

Distal 2nd to 5th metatarsals

Proximal 2nd and 5th metatarsals

Calcaneus

Navicular

Fibula

Proximal second metatarsal

Pubic Ramus

Talus

Cuboid

Medial malleolus

(inner bony prominence of ankle)

Cuneiform

Sesamoids

With stress reactions(as opposed to fractures) at low risk sites, the offload from running can be cut to  4 weeks followed by a gradual return to full training over the following 4-6 weeks. These time frames are a guide only and can vary significantly depending on any ongoing symptoms or lack thereof, the site and grade of bone stress injury, the athlete’s risk factors, personal circumstances / short term goals and availability of other rehabilitation facilities such as Alter G (figure 8) and underwater treadmills.

Pain can be managed by the use of simple analgesia such as paracetamol or cocodomol. Anti-inflammatory medication should be avoided as they can delay bone healing5. Sometimes crutches are needed for the first 1-2 weeks. Pneumatic bracing with an aircast boot, has been shown to reduce time to return to full activity in some lower limb stress fractures e.g. tibia6.

Modifiable risk factors need to be dealt with early to prevent recurrence e.g. vitamin D and calcium supplementation, optimise energy availability in female athlete triad, address any biomechanical factors and consider the need for orthotic prescription, appropriate strength and conditioning exercises are very important.

Stress fractures at high risk of non-union require specialist input with a sports physician and/or an orthopaedic surgeon.

Other treatment options sometimes used in elite athletes to expedite return in time for major competitions include the use of Bisphosphonate medication, Parathyroid Hormone, Strontium, Calcitonin, Exogen (pulsed ultrasound), Extracorporeal Shockwave Therapy (ESWT) and Hyperbaric Oxygen Therapy (HBOT). It should be stressed that the evidence base behind these interventions is still growing. They are expensive and some carry a significant risk of side effects. There is no substitute for offloading from running and allowing time for the body to heal itself naturally.

Prevention

Prevention is always better than waiting until the injury or illness has occurred. Modifiable risk factors should be screened for and addressed. The commonest risk factors for stress fractures seen in UK based runners are vitamin D deficiency, inadequate calcium intake in the diet, low energy availability due to inadequate calorie intake to match calorie expenditure through training, low bone mineral density in female athletes with the female athlete triad, inadequate muscle strength/conditioning and a rapid progression of training volume and / or intensity without adequate time for recovery to allow bone to adapt.

Consider the following:

  • Speak to an experienced coach about your training schedule. This should involve a gradual progression of running volume and intensity over several months and years with annual periodisation of training. Recovery days need to be built into the weekly running schedule to allow bone time to adapt to the loads placed on it. This is especially important in younger athletes (<20) with an immature skeleton.
  • Ask your GP to check a vitamin D level twice a year in October/November and March/April time and if needed, taking high dose vitamin D3 supplementation if the level is less than 75nmol/L.
  • Take a daily vitamin D supplement e.g. 1000units Vitamin D3 daily
  • Aim to get 1200mg of calcium / day through your diet e.g. milk and other dairy products or through supplementation.
  • Discuss your daily calorie requirement and how to achieve this with a sports nutritionist. Aim for a Body Mass Index >19 kg/m2.
  • For female athletes who don’t have regular periods, you should ask your GP to arrange a DEXA scan to look for evidence of osteoporosis. This investigation is also important for male and female athletes who have had more than 1 stress fracture or who have other risk factors for osteoporosis. Where low bone density/osteoporosis is identified, you should be advised on management by your doctor.
  • In athletes with the female athlete triad, ideally seek out a consultation with a sports medicine doctor. There are now well over 100 specialists in Sport & Exercise Medicine working across the UK. In athletes with a possible eating disorder seek medical input early.
  • An appropriate weekly strength and conditioning programme to address core stability, gluteal control, quadriceps, hamstrings and calf muscle strength and endurance. This requires more than a weekly circuit training session. Multidirectional hopping (for as little as 2-3 mins daily) and appropriate loading for the lumbar spine and wrists is also important in preventing stress fractures and in optimising bone mineral density and bone architecture at these sites.

References

  • Bennell KL et al. The incidence and distribution of stress fractures in competitive track and field athletes. A 12 month prospective study. AJSM 1996;24:211-7
  • Kaeding CC et al. Management and return to play of stress fractures. CJSM 2005; 15:442-7
  • Pegrum J et al. Diagnosis and management of bone stress injuries of the lower limb in athletes. BMJ 2012; 344:e2511
  • Arendt EA et al. The use of MRI in the assessment and clinical management of stress reactions of bone in high performance athletes. Clin Sports Med 1997;16:291-306
  • Wheeler P, Batt M. Do Non Steroidal Anti-Inflammatory Drugs adversely affect stress fracture healing? BJSM 2005;39:65-69
  • Swenson et al. The effect of a pneumatic leg brace on return to play in athletes with tibial stress fractures. AJSM 1997 May-Jun;25(3):322-8.
  • Mountjoy M, Sundgot-Borgen J, Burke L, et al The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S) Br J Sports Med 2014;48:491-497.

pilates-pic.jpg

What is Clinical Pilates?

Clinical Pilates is a Physiotherapy led functional and dynamic exercise programme focused on retraining normal patterns of movement from a central stable core. This rehabilitation method is particularly effective in correcting the biomechanical imbalances around the hip, lumbar spine and pelvis through exercises that isolate the proximal hip and core muscles. Strengthening these deep stability muscles can help to correct muscle imbalance and improve hip joint function.

Clinical Pilates is different to other physiotherapy rehabilitation exercises because it concentrates specifically on “centering”  which refers to activating the deep abdominal muscles, back muscles and pelvic floor in unison, while keeping the lower back in a neutral spine position. This restores the natural curves of the spine and improves body awareness by training the centre to remain active throughout the duration of the Pilates movements.

The Clinical Pilates concept of strength training is that there are different components which make up a functional core:-

Supportive Core

(Transversus Abdominus, Pelvic Floor, Multifidus, Diaphragm)

+

Strength Core

(Latissimus Dorsi, Serratus Anterior, Obliques, Rectus Abdominus, Quadratus Lumborum, Gluteals, Thoroco-lumbar fascia)

+

Extremities

(Arms, legs)

=

Functional Core

Centering activates the supportive core. The controlled movements activate the strength core and the movements incorporate actions of the extremities which facilitates an effective method of core strengthening.

Alongside functional core strengthening, Clinical Pilates exercises also follow the APPI (Australian Physiotherapy & Pilates Institute) principles which include:-

  • Concentration
  • Breathing
  • Centering
  • Control
  • Precision
  • Flowing movement
  • Integrated movement patterns
  • Routine

These are all aspects which make Clinical Pilates a valuable method of strengthening.

Why Clinical Pilates for hip rehabilitation?

Every exercise in the Clinical Pilates repertoire has a particular movement focus. For example, some exercises focus on controlled strength, rotary stability, abdominal strengthening, gluteal strengthening or limb dissociation. These concentrated movements are the foundation of early stage rehabilitation from hip injury or surgery, allowing Physiotherapists to prescribe patient-centred, individualised Pilates exercises.

Basic level Clinical Pilates exercises are often included in a thorough Physiotherapy assessment. These movements allow Physiotherapists to identify biomechanical imbalances and movement dysfunction. This facilitates the prescription of specific exercises to correct movement dysfunction and reduce hip symptoms to aid recovery.

Clinical Pilates can also help to prevent hip injury. . .

Commonly Clinical Pilates is used as a rehabilitation method in Physiotherapy for hip pain, hip dysfunction or following hip surgery. However, it is also a popular and effective method of injury prevention or prehabilitation.

Regular participation in Clinical Pilates classes will maintain and continually improve strength around the proximal hip and core muscles. This means the development of muscle imbalance, movement dysfunction or overloading leading to hip pain are less likely.

This is particularly relevant for the sporting or athletic population. A recent research study proved that a 6 week course of Clinical Pilates classes can improve functional movement and reduce the risk of injury in recreational runners (Laws et al, 2017).

Additional benefits of Clinical Pilates

Alongside improvements in core stability, flexibility and strength, Clinical Pilates has other health benefits including stress management, breathing control and relaxation.

Clinical Pilates exercises can be performed in 1:1 sessions or small group classes led by an experienced and fully qualified Physiotherapist to aid recovery from hip surgery or injury.

Anna Laws

Physiotherapist

Spire Manchester


DSC00424-1200x800.jpg

A painful hip can be through a one off injury but more commonly in clinic we see pain that has come on gradually over a period of months and got worse. Patients describe a deep pain in either their groin or buttock or both and don’t recount a particular event. Their pain tends to vary in severity and is aggravated by certain movements that compress the joint surfaces including prolonged sitting.

Often these patients are scanned and the results of the imaging don’t match their pain presentation. Some have a large amount of damage in their hip but are relatively pain free and others are very painful with little to report on the scan.
The majority of patients (regardless of their scan results) have muscular inhibition, as a result of the pain they are in and which we can address with home exercises which almost always helps them with their pain.

Patients with painful hips tend to keep going on them until they have picked up a poor movement pattern (limp) which sets off a cascade of events that if you don’t address with treatment and rehabilitation they continue to gradually get worse.

Once you are feeling pain the important thing to do initially is to identify the things that aggravate your pain and avoid them. This may sound like common sense but you would be surprised how many people try to push through the pain only to make it worse. For instance, if prolonged sitting is a problem, record how long it takes in sitting for you to get to 4/10 severity and then use this a s a guide to make sure that you don’t exceed this pain threshold in any one day.

Do take medication as well. People will not take medication because they think it will numb them so they do not know when they are making things worse. Once you know that without medication you can only sit for 40 mins then once you are taking medication stick to this rule of not sitting for longer than 40 mins for 3 days and then reassess your progress.

A person who has had hip pain for a month or longer will normally always have inhibition in their gluteal muscles (buttocks) and adductors (groins). In clinic, we would normally always prescribe exercises to help wake these muscles up. I often suggest a single leg bridge and a ball squeeze as a good place to start. Patients with hip pain also tend to have poor trunk strength, often worse on their painful side so we would also teach a modified plank exercise in three positions to strengthen the natural corset which is so important in stabilising the spine on the pelvis and off-loading the hips.

At the same time as addressing muscular inhibition, we also encourage patients to work on their spasm. We often find in clinic if the gluteals and adductors aren’t working properly, their default is to go into spasm to stop you moving which causes you more pain. We find teaching you deep pressure techniques with a foam roller can reduce spasm and pain and be a great thing to do before you do your strengthening rehab.

Regarding how much and how often. Obviously most patients are busy people and struggle to get anything done regularly just as some patients can over do it and aggravate things further. Therefore finding a balance is important and listening to your hip and how it is feeling, is of up most importance. I always suggest doing rehab Monday, Wednesday and Friday is a good place to start. The body needs to rest and recover from the strengthening you are doing and normally I say if you are sore (less than 4/10) during the exercises and and/or afterwards, that needs to be monitored and if you haven’t recovered by the next day and you are still 4/10 pain then you are doing too much of the wrong thing for you at that stage. During each rehab session I ask people to repeat each exercise three times until fatigue with a minutes rest between sets.

Catching hip pain early and treating it aggressively before you pick up a poor movement pattern is essential for a speedy recovery. Do not leave things for a month before you do something about it. Early intervention is key in managing any injury.
So in summary, the devil is in the detail. We see many patients who make fantastic recoveries from severe hip pain with a huge amount of damage on a scan. The patients who do best are those who catch the pain early and make time to do the rehab properly and listen to their symptoms and don’t train with too much pain.

If in doubt and before you start doing the wrong thing it is important to get an accurate diagnosis. You should always get in to see an experienced physio or specialist sports medicine doctor with a special interest in the hip and groin as it is a specialist area and requires often a multi-centred approach.

If you would like further information or would like to send us a question please feel free to get in touch and we will help you as much as we can.

Douglas Jones
Director, Altius Healthcare
www.altiushealthcare.co.uk


Screen-Shot-2017-10-30-at-12.21.57.png

Both adults and children alike find that their level and intensity of exercise peaks and troughs throughout the year. The body has the most amazing capacity to adapt to any stress or load placed on it providing that it has time to do so. If we ask more of the body both bone and muscles can get stronger. The problems start when we have a sudden spike in a new activity or we do more sport at a greater intensity following a period of rest such as following the summer holidays and Christmas. When we then resume our sport with renewed vigor in a determination to regain any lost fitness the sudden spike in activity results in tissue overload and pain. Transitions between the sporting seasons such as the end of the football season and beginning of the cricket season pose problems with double the demand on the body.

In growing athletes, there are two common types of overuse injuries, those affecting the bone and those affecting the insertion of the tendon on to the bone. Excessive, repetitive and sudden loading of young bones can cause bone bruising which often causes pain. With adequate rest, this will settle but if the symptoms are ignored, the child becomes at risk of a hairline fracture in the bone known as a stress fracture. These types of injuries tend to affect cricketers, swimmers and gymnasts who repeatedly arch their lower back stressing the bones in the lower back. They also are prevalent in the shin and foot bones especially in young runners. Recent thinking is that, in addition to excessive load there may also be a link to low levels of Vitamin D and it is worth considering supplementing the diet of children who live in northern England and those involved in indoor sports such as swimming and gymnastics.

In adults, we see many overuse injuries in tendons such as the rotator cuff tendon in the shoulder caused by a sudden spike in activities such as hedge cutting and is known as a tendinopathy. However, in children the area of bone where the tendon attaches to the bone is weaker than the tendon itself and loading the tendon in the same way results in a growth plate injury to the bone. These injuries are commonly found in the heel where the Achilles’ tendon attaches (Sever’s disease), the quadriceps attachment at the knee (Osgood Schlatters disease) and can occur in any area where muscles attach to young immature bones.

Traditionally the advice for overload injuries was rest. With careful management compete rest may not be necessary if the young athlete is given the correct early advice. There are guidelines within certain sports such as in cricket to limit the number of balls that young crickets can bowl in any one session and accumulated over the week. Many experts have used graphs such as this one to help us understand what is too much or too little (the “Goldilocks principle”) and it varies from child to child. The important factor is giving the growing body time to adapt and become stronger. The England Cricket Board adopt a recipe of no more than 2 consecutive days of fast bowling with no more than 4 days of play in every 7-day period.

This is a sensible approach to most sports giving the body a day to recover allowing minor stresses to be heal and repair and more tissue can be laid down in case the load recurs. Many young athletes can pack an enormous amount in to a week with some children doing several sports a day and no days off to repair. It is not only the muscles and bones in these very active children that are at risk. These children are often exhausted and susceptible to a condition called overtraining syndrome with recurrent sore throats and fatigue. Ensuring children get adequate sleep is paramount as this is when the body can repair.

The better conditioned a young athlete becomes, the stronger level of protection against injury. Learning to move correctly is critical to a child’s development and just like they must become literate in Maths and English, it is essential that they learn correct movement patterns and become physically literate. Movements such as lunging, crawling, squatting and deadlifts form the basis of many sports and should be taught at an early age but are often missing from the current physical education curriculum.

Physiofit specialises in the development of young athletes and can provide guidance on how to create strong and robust athletes who learn to monitor their workload and safely learn how to do age appropriate strength and conditioning in a 1:1 or class environment in our rehabilitation centre in Wilmslow.

Angela Jackson MCSP AACP ACPSM – www.physiofit.co.uk
Angela established Physiofit in 1992. She has been involved in treating people in sports at all levels both in the UK and Canada for the last 28 years. She has worked with the England Volleyball team, Cheshire Hockey, National league hockey clubs and is the Consultant Physio to all the Cheshire Cricket teams. Her major interest is in prevention of injuries especially in children. She now lectures on courses to share her expertise on developing athletes and gives regular talks in schools and clubs on injury prevention.
​She launched the Physiofit screening programme 20 years ago to identify how to prevent injuries and enhance performance and has helped many young athletes realise their sporting dreams in representing their country including her own two children. Her areas of expertise are in knee injuries, the sporty child, hockey, golf, running, cricket and nordic walking.
In the last few years she has become a dedicated running physio training with The Running School and with Blaise DuBois from the Running Clinic in Canada. She has extensive knowledge in golf strength and conditioning and screening having trained with TPI, Ramsay McMaster and Golf Biodynamics.


Both-hips.jpg

They say prevention is better than cure and that is certainly true in hips! Having said that you can’t change your genetics. Some people have a certain shape to their hip which seems to predispose to the development of arthritis. These ‘CAM’ and ‘Pincer’ shaped hips predispose to pinching (impingement) of the hip against its socket, leading to damaged cartilage and eventually arthritis. Hip Arthroscopy surgery can be used to reshape the hip and may prevent early arthritis progressing to advanced stages.

The most important modifiable risk factors for arthritis is your weight and activity level. Being even slightly overweight leads to increased load on the hip joint. Over time the hip can be squashed down and change shape permanently. The increased angle leads to more pinching and the hip wears down more quickly. Losing weight can slow the whole process down. Other people have illnesses in childhood such as Hip Dysplasia (the hip and socket are too shallow, having not formed properly), Perthes disease (the blood supply to the hip gets cut off in childhood), or Slipped capital femoral epiphysis (the growth plate of the bone slips out of place). All of these conditions need to be spotted in childhood so something can be done about it and potentially prevent adult hip osteoarthritis.

Early hip OA is much easier to fix than advanced OA. Sometimes X-rays can miss the early features, MRI or CT scans are more reliable. If you are sure that you have hip or groin pain, but the X-ray is normal, you will need to speak to your doctor about a specialist opinion or scan.

Sometimes a steroid injection done under X-ray guidance can give temporary relief, and provide clarification around whether pain in the groin or buttock area is truly coming from the hip joint, however, they generally wear off after 2-3 months, so it is not a long-term option. Other substances such as hyaluronic acid (an artificial version of your natural joint fluid) and PRP are also being used but need to be further evaluated to see if they have long-term benefit.

It is important to do regular strengthening exercise (such as core stability and pilates) and maintain a healthy weight, if hip pain is becoming intrusive, ask to see one of our specialists.

Dr Leon Creaney
www.sportandexercisemedicine.co.uk


hip-arthritis-young-adult.jpg

Who does this effect?
This condition occurs when there is degeneration in the hip causing damage to the joint surface (figures 1 and 2). There are numerous different causes but the most common is osteoarthritis. However, it can occur earlier due to abnormalities within the hip. This may be due to a previous injury, childhood hip disease, femero-acetabular impingement (A misshapen hip that catches and causes damage to the hip joint) or problems with the blood supply to the hip.

How does it present?
Commonly, this causes groin pain often going down the thigh to the knee. The hip is stiff, and the patient walks with a limp. As arthritis becomes more widespread and severe, the pain becomes more constant, it may occur at night and be associated with increased stiffness, decreased mobility and ability to exercise.

What investigations do you need?
X-rays of the hip to confirm the diagnosis are taken as standard. More complex scans such as CT or Magnetic Resonance may be needed to pin down the diagnosis and help surgical planning.

Non-surgical Treatment
To begin with, simple measures are tried such as painkillers, weight loss and activity modification. Oral supplements such as glucosamine and chondroitin may benefit some patients, especially with early arthritis. Injections such as steroid, hyaluronic acid or PRP may be used to either confirm the source of the pain (e.g. if the patient also has back pain) or in those patients who are not ready for a joint replacement.

When a patient has severe arthritis and painkillers no longer control the pain, hip joint replacement is advised. This has the benefit of relieving the pain and allowing the patient to return to a near normal level of activity.

In simple terms, the ball of the hip is removed and the thigh bone is prepared before the metal stem is inserted. The pelvic cup is then prepared and the artificial cup is inserted and held using either bone cement or an artificial coating that bonds directly to the surrounding bone surface (figures 3,4 and 5).

There are different forms of hip replacement and each one has a role to play depending on the patient’s age and activity level. Younger (<70) and more active patients, will have implants where the cup liner is made of a wear resistant plastic and the ball of the hip will be made of ceramic, which is very smooth, hard wearing and produces less wear debris than traditional implants.

In general, a hip replacement is a safe and reliable operation. The vast majority of patients are either pain-free following the surgery or have a significant improvement in their symptoms, returning to a level of activity that has not been possible for some time.

Approximately, 5% of patients will develop a post-operative complication. The most important of these are a deep infection, hip dislocation, leg lengthening, nerve and blood vessel injury, blood clots, fracture, future need for revision and medical complications such as stroke or heart attack. Great care is taken to minimize these risks including the use of antibiotics and blood thinning drugs around the time of the operation. Using information from The National Joint Register, we know that in general (if a proven combination of implants is used), approx. 95% of hip replacements will still be functioning well at 14 years although this drops in patients less than 55 years old to 93% at 10 years, due to their higher activity level. Patients tend to remain in a hospital for between 2 and 4 days.
It is important to undergo a focused rehab program both before and after surgery, focusing on hip strength and core stability as this will help patients to return to activity sooner. Patients should be able to return to a wide range of sports after surgery including cycling, swimming, tennis and skiing.

Visit arthritis solution for more information



A great overview by Mike Kennedy

As a sports physiotherapist I work in a number of diverse settings which gives me access to a wide range of clients from the elite professional footballer to the office worker who is a keen triathlete at the weekends. For each client the need is the same “how can I get the most out of my body following injury in order to improve my performance.” Pain at the hip and groin region particularly can be very debilitating for the athlete, quite often it is very poorly understood area and as a consequence the problem can become chronic and result in an extended period on the sideline’s.

Diagnostics & Collaborative working
Diagnostics play an important role as the hip and groin is a very complex area and problems can be difficult to diagnose. Orthopaedic consultant opinion together with radiographic imaging and specialist reporting is important in pinning down the correct diagnosis. A collaborative approach in assessment from leading specialists in Sports Medicine and the Sports Physiotherapist is the most effective route in treating the athlete in terms of getting them back to action as soon as is safely possible and providing a solution to ensure their long term fitness.

Focused & Progressive Rehabilitation
First of all it is important to educate the athlete about their injury, the mechanism of injury often involving video analysis and the rehabilitation plan that will allow them to return to sport and avoid any injury reoccurrence. It requires a ‘buy in’ from both the therapist and the athlete to commit to a rehabilitation programme which will allow them to return to full fitness.
Hip and groin injury can be multifactorial in nature but it is important to focus targeted rehabilitation at the region initially and then progress to more dynamic loading as symptoms improve. I have found the following progressive stages of rehabilitation to be most effective within the sporting population:

  • Intersegmental control and strength (such as a deadlift or double leg squat)
  • Linear mechanics and running load (such as barbell/overhead running and leg change drills)
  • Multidirectional mechanics and sprinting (such as a lateral shuffle or Zig Zag cutting)

Within these 3 phases the therapist encourages correct execution in technique and correct lumbo-pelvic form. Furthermore, a gradual increase in load progression, speed intensity and multi-directional movement patterns is also encouraged. Other treatment methods may also be incorporated if deemed necessary, such as improving the mobility of the lower extremities and spine with manual therapy and sports yoga, application of strength and conditioning principles, Shockwave therapy and clinical Pilates.

It is also important to keep the athlete focused and interested within rehabilitation. In order to achieve this outcome the therapist must make rehab specific to their sport; jointly develop drills with the athlete to mirror scenarios encountered within a game situation and make rehab proprioceptively demanding in order to retrain reaction timing and load response.

Profiling & injury prevention
There is now a growing trend towards profiling of the athlete to highlight any injury risk factors and movement dysfunction that may predispose the athlete to injury.
A specific screening tool devised by the therapist specific to the demands of the sport and/or the athletes overall physical capabilities is generally used twice a year in both a squad environment or on an individual basis to measure athletic performance. The screen may broadly include the following battery of tests:

  • Range of motion eg. Shoulder mobility
  • Strength testing eg. Adductor Squeeze test
  • Balance testing eg. Single leg landing
  • Work Capacity testing eg. Push up to failure
  • Movement Patten analysis eg. Squat form
  • Outcome measure eg. Triple hop for distance

Data produced from the screen allows us to flag up any potential weaknesses that could be a contributing factor to injury and have an adverse effect on overall physical performance.
In order to nullify these weaknesses the athlete who presents as a high injury risk is given outlined bespoke action points to work on and then they are assessed more regularly, every few months throughout the year on key tests relevant to their profiling findings. This detailed monitoring allows us to prevent potential injury occurrence in key area’s such as the hip and groin and ensures the athlete remains fit, strong and pain free in order to achieve optimal performance.

Mike Kennedy MSc BSc (Hons) MHCPC MCSP MACPSEM

Manchester United Football Club Academy Physiotherapist
Lead Physiotherapist, Mike Kennedy Chartered Physiotherapy & Pilates
Highly Specialist Musculoskeletal & Sports Physiotherapist, Spire Perform Manchester
Consultant Physiotherapist to the Professional Footballers’ Association (PFA)
Associate Research Physiotherapist to the FASHIoN trial – Studying Hip Impingement

You can find more information on the services Mike provides at the following web resources:
Wigan Physiotherapy
Spire Healthcare


The Manchester Hip Clinic is committed to helping all kinds of people with hip problems to be free from pain and often to resume near-normal levels of physical activity – even those who may have thought that such relief would never be possible.

Copyright :: Manchester Hip Clinic 2018. Design and Support by IntegroMD